簡要描述:大鼠、小鼠自動活動跑輪,提供了一種簡單方便的方法來測量大鼠、小鼠在長時間活動中對化學或環境刺激的反應
聯系電話:021-54377179
大鼠、小鼠自動活動跑輪,提供了一種簡單方便的方法來測量大鼠、小鼠在長時間活動中對化學或環境刺激的反應。
可連接到52600數據接口和加裝ANYmaze行為學分析軟件,實現對晝夜節律或運動功能等方面的研究。
產品特點
· 適用于大鼠和小鼠
· 易于監控:兼容多種何數據采集系統
· 透明的聚碳酸酯籠子,具有的可見性
· 全不銹鋼車輪結構,便于維護
· 可獨立工作,也可連接電腦
· 可選配打印機,具有內部存儲和電腦軟件
· 易于監測,易于維護,多功能接口可同時連接12只籠子
1850型小鼠自動活動跑輪
· 11850型小鼠跑輪采用經典的25cm直徑,由不銹鋼制成,配有低摩擦特氟隆襯套,運作非常平穩;
· 小鼠在2mm直徑的桿上自由跑到,桿子間隔7mm;
· 跑輪裝在一個透明的聚碳酸酯籠子里,不銹鋼金屬蓋和含U型顆粒料斗的專用蓋鎖;
1800型大鼠自主活動跑輪
· 大鼠跑輪的直徑為35cm,桿子直徑為2mm,桿子的間距為8.8 mm;
· 大鼠籠尺寸:48(h)x32(w)x47(d)cm;
轉數計數器
· 大鼠和小鼠活動籠配有磁性開關和LCD計數器,可統計轉輪累計轉數;
· 根據需要,還可以選擇不帶計數器的1800-S大鼠自動活動跑輪和1850-S型小鼠自主活動跑輪
· 使用數據線與軟件在電腦端進行數據收集;
數據采集
· 配備多功能接口52600,能夠同時連接12活動跑輪;
· 可選配專業的分析軟件ANYmaze進行管理,進行分析和統計;
選擇52600多功能數據采集接口時,不需要計數器,這時需要選擇的型號是:1800-S型大鼠自動活動跑輪和1850-S型小鼠自主活動跑輪。
大鼠活動示意圖:
參考文獻:
1.Reddy, Anita et al. “pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise." Cell vol. 183,1 (2020): 62-75.e17. doi:10.1016/j.cell.2020.08.039
2.Brooks, Simon P, and Stephen B Dunnett. “Tests to assess motor phenotype in mice: a user's guide." Nature reviews. Neuroscience vol. 10,7 (2009): 519-29. doi:10.1038/nrn2652
3.Videnovic, Aleksandar et al. “'The clocks that time us'--circadian rhythms in neurodegenerative disorders." Nature reviews. Neurology vol. 10,12 (2014): 683-93. doi:10.1038/nrneurol.2014.206
4.Correia, Jorge C et al. “Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity." Cell metabolism vol. 33,11 (2021): 2215-2230.e8. doi:10.1016/j.cmet.2021.09.003
5.Mattson, Mark P, and Thiruma V Arumugam. “Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States." Cell metabolism vol. 27,6 (2018): 1176-1199. doi:10.1016/j.cmet.2018.05.011
6.Islam, Mohammad R et al. “Exercise hormone irisin is a critical regulator of cognitive function." Nature metabolism vol. 3,8 (2021): 1058-1070. doi:10.1038/s42255-021-00438-z
7.Miletta, Maria Consolata et al. “AgRP neurons control compulsive exercise and survival in an activity-based anorexia model." Nature metabolism vol. 2,11 (2020): 1204-1211. doi:10.1038/s42255-020-00300-8
8.Brigger, Daniel et al. “Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age." Nature metabolism vol. 2,8 (2020): 688-702. doi:10.1038/s42255-020-0228-3
9.van Veen, J Edward et al. “Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure." Nature metabolism vol. 2,4 (2020): 351-363. doi:10.1038/s42255-020-0189-6
10.Brocker, David T et al. “Optimized temporal pattern of brain stimulation designed by computational evolution." Science translational medicine vol. 9,371 (2017): eaah3532. doi:10.1126/scitranslmed.aah3532
11.Janota, Cátia Silva et al. “Shielding of actin by the endoplasmic reticulum impacts nuclear positioning." Nature communications vol. 13,1 2763. 19 May. 2022, doi:10.1038/s41467-022-30388-3
12.Bobba, Christopher M et al. “Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation." Nature communications vol. 12,1 289. 12 Jan. 2021, doi:10.1038/s41467-020-20449-w
13.Mridha, Zakir et al. “Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve." Nature communications vol. 12,1 1539. 9 Mar. 2021, doi:10.1038/s41467-021-21730-2
14.Navas-Olive, Andrea et al. “Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations." Nature communications vol. 11,1 2217. 5 May. 2020, doi:10.1038/s41467-020-15840-6
15.Nohara, Kazunari et al. “Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge." Nature communications vol. 10,1 3923. 28 Aug. 2019, doi:10.1038/s41467-019-11926-y
:,
:
yuyanbio
:yuyanbio