簡要描述:BodyCap的e-Celsius體溫測量膠囊是一款可連續監測、記錄并無線傳輸核*心體溫信號的微型膠囊
聯系電話:021-54377179
BodyCap的e-Celsius體溫測量膠囊是一款可連續監測、記錄并無線傳輸核*心體溫信號的微型膠囊。
體溫膠囊經口腔攝入進入體內,通過胃、腸道,由排出。膠囊自身具有記憶功能,測量對象無需佩戴任何監測器而進行無限制的測量。使用簡單方便,用于多個科研領域。我們還有動物的核心體溫膠囊。
外部溫度和環境濕度會將與物理力有關的熱應力放大,人體體溫調節機制的飽和系統性地導致性能下降,并可迅速導致體溫過高。基于可攝取電子膠囊的e-Celsius Performance®解決方案可實現對核心體溫的連續監測。系統能夠識別和傳輸溫度,并連續記錄人體的核*心溫度,在1米范圍之內都可以收集到可靠的實驗數據。
在運行項目的應用中:很多項目都具備測試條件,特別是有氧運動為主的項目,如自行車,長跑,鐵人三項;也可應用于橄欖球和跳水項目。
多種規格可供選擇,有專門的人體型號,也有多種用于實驗室大鼠、小鼠、比格犬等動物的型號。
體溫膠囊的主要特點:
·體積小巧,食用方便,對機體無損害;
· 實時、連續、監測;
· 無線無導管測量,測試對象亦無需實時佩戴監測器,實現無限制測量方案;
· 膠囊內置存儲記憶功能,可存儲多達2000組數據,無需擔心數據丟失;
· 監測器可同時監測3枚膠囊數據,且自身可多達7臺并聯,實現高通量測量;
主要技術參數:
· 人用體溫膠囊,經口服攝入,通過消化道排泄,體內時間1-2天(因人而異)
· 測量參數:測量溫度范圍25-45℃,精確度0.02℃,采樣頻率30Hz(可設定),內部可存儲2000組數據;
· 傳輸參數:傳輸距離1m,傳輸頻率433Hz;
·規格參數:17.7*8.9mm,重1.7g,可存儲時間1年,開始使用后20天;
· 可同時監測并顯示3枚膠囊傳輸數據,并可通過PC/MAC觀察分析;
· 每臺監測器可存儲80000組數據;
主要應用領域:
·體溫過低/高溫中暑預防:體溫測量降低低溫/高溫惡劣環境損害,或加強對發熱、寒戰等的感知;
·運動熱身/恢復監測:監測人體鍛煉各階段體溫的變化,有助于判斷機體運動技能;
·技能評估、優化:用于評估機體體溫調節或心臟節律調節功能等;
·量化、預防、規避時差影響:監測體溫晝夜節律變化,制定合理作息,從而規避時差影響等;
· 睡眠、晝夜節律和運動表現分析:通過體溫變化反映機體睡眠、晝夜節律、運動等規律。
參考文獻:
1. Michael Douglas Reed et al., (2019)“IL-17a promotes sociability in mouse models of neurodevelopmental disorders" Nature doi:10.1038/s41586-019-1843-6
2. Topilko T et al.,(2022) “ Edinger-Westphal peptidergic neurons enable maternal preparatory nesting" Neuron doi:10.1016/j.neuron.2022.01.012
3. NPJ Vaccines et al., (2022) “Safety and immunogenicity of four-segmented Rift Valley fever virus in the common marmoset" NPJ Vaccines DOI:10.1038/s41541-022-00476-y
4. Laperrousaz et al., (2018) “Lipoprotein Lipase Expression in Hypothalamus is involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure" Frontiers in Endocrinology doi: 10.3389/fendo.2018.00103
5. Meyer et al., (2017) “Body Temperature Measurements for Metabolic Phenotyping in Mice" Frontiers in Endocrinology doi: 10.3389/fendo.2018.00103
6. Ru?ange et al., (2020) “Pre-warming before general anesthesia with iso?urane delays the onset of hypothermia in rats" PLoS One doi: 10.1371/journal.pone.0219722
7. Tattersall et al., (2016) “Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature" P Roy Soc B-Biol Sci doi: 10.1098/rspb.2022.0526
8. Schulze et al., (2018) “Body temperature of bitches in the ?rst week after parturition measured by ingestible loggers" Reproduction in Domestic Animals doi:10.1111/rda.13330
9. Guisle et al., (2020) “Circadian and sleep/wake-dependent variations in tau phosphorylation are driven by temperature" Sleep doi:10.1093/sleep/zsz266
10. Thi Cuc Mai et al.,(2021) “Low-Level Radiofrequency Exposure Induces Vasoconstriction in Rats." Sci Rep DOI:10.1002/bem.22350
eCelsius
11. Mart Toots et al., (2019) “Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia Sci Transl Med "doi:10.1016/j.xcrm.2021.100408
12. van Maanen L et al., (2019) “Core body temperature speeds up temporal processing and choice behavior under deadlines" Sci Rep doi:10.1038/s41598-019-46073-3
13. Marine Alhammoud et al.,(2021)“Thermoregulation and shivering responses in elite alpine skiers" Eur J Sport Sci doi:10.1080/17461391.2020.1754470
14. Christopher J. Stevens et al.,(2018) “Effect of two-weeks endurance training wearing additional clothing in a temperate outdoor environment on performance and physiology in the heat " Temperature (Austin) doi:10.1080/23328940.2018.1474672
:,
:
yuyanbio
:yuyanbio